

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

FEATURES		
 Member of the Texas Instruments Widebus™ Family 		R DL PACKAGE VIEW)
Operates From 1.65 V to 3.6 V		56] 1 0EBA
Inputs Accept Voltages to 5.5 V	1CLKAB	55] 1CLKBA
• Max t _{pd} of 6.6 ns at 3.3 V	1СЕАВ	54 1CEBA
 Typical V_{OLP} (Output Ground Bounce) 	GND 4	53 GND
$< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$	1A1 5	52 1B1
 Typical V_{OHV} (Output V_{OH} Undershoot) 		51] 1B2
>2 V at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$	V _{CC} [7 1A3 [8	50 V _{CC} 49 1B3
 Supports Mixed-Mode Signal Operation on All 	1A4 [] 9	48 1B3
Ports (5-V Input/Output Voltage	1A5 [] 10	47 1B5
With 3.3-V V _{cc})	GND 11	46 GND
 I_{off} Supports Partial-Power-Down Mode 	1A6 12	45 1 B6
Operation	1A7 🛛 13	44] 1B7
Bus Hold on Data Inputs Eliminates the Need	1A8 🛛 14	43] 1B8
for External Pullup/Pulldown Resistors	2A1 🛛 15	42 2B1
Latch-Up Performance Exceeds 250 mA Per	2A2 16	41 2B2
JESD 17	2A3 [17	40 2B3
ESD Protection Exceeds JESD 22	GND 18	39 GND
– 2000-V Human-Body Model (A114-A)	2A4 [19 2A5 [20	38 2B4 37 2B5
– 200-V Machine Model (A115-A)	2A5 [] 20 2A6 [] 21	36 2B6
	V _{CC} [22	35 V _{CC}
– 1000-V Charged-Device Model (C101)	2A7 [23	34 2B7
DESCRIPTION/ORDERING INFORMATION	2A8 24	33 2B8
	GND 25	32] GND
This 16-bit registered transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.	2 CEAB [26	31 2 2 CEBA
	2CLKAB	30 2CLKBA
The SN74LVCH16952A contains two sets of D-type	2 <mark>0EAB</mark> [28	29 20EBA

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
			SN74LVCH16952ADL		
40°C to 95°C	SSOP – DL	Tape and reel	SN74LVCH16952ADLR	LVCH16952A	
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74LVCH16952ADGGR	LVCH16952A	
	TVSOP – DGV Tape and reel		SN74LVCH16952ADGVR	LDH952A	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

flip-flops for temporary storage of data flowing in either direction. The device can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input, provided that the clock-enable (CEAB or CEBA) input is low. Taking the output-enable (OEAB or OEBA)

input low accesses the data on either port.

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

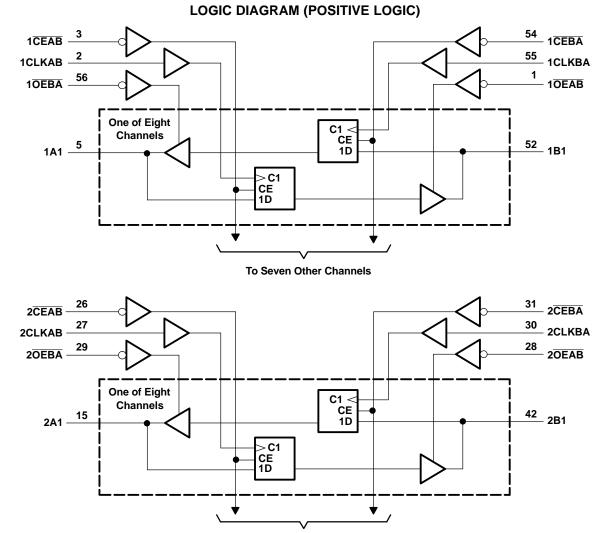
DESCRIPTION/ORDERING INFORMATION (CONTINUED)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. The bus-hold circuitry is part of the input circuit and is not disabled by \overline{OE} or DIR.


	INPUTS							
CEAB	CLKAB	OEAB	Α	В				
Н	Х	L	Х	B ₀ ⁽²⁾				
Х	L	L	Х	B ₀ ⁽²⁾ B ₀ ⁽²⁾				
L	\uparrow	L	L	L				
L	\uparrow	L	Н	Н				
Х	Х	Н	Х	Z				

FUNCTION TABLE⁽¹⁾

(1) A-to-B data flow is shown; B-to-A data flow is similar, but uses \overline{CEBA} , CLKBA, and \overline{OEBA} .

(2) Level of B before the indicated steady-state input conditions were established

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

To Seven Other Channels

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾	Input voltage range ⁽²⁾			
Vo	Voltage range applied to any output in the h	-0.5	6.5	V	
Vo	Voltage range applied to any output in the h	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current V _O < 0			-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
		DGG package		64	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package		48	°C/W
		DL package		56	
T _{stg}	Storage temperature range		-65	150	°C

TEXAS

ISTRUMENTS www.ti.com

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		v
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	
VI	Input voltage		0	5.5	V
	Output up have	High or low state	0	V _{CC}	V
Vo	Dutput voltage	3-state	0	5.5	v
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	0
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA
		$V_{CC} = 3 V$		-24	
		V _{CC} = 1.65 V		4	
	Low lovel output ourrent	V _{CC} = 2.3 V		8	mA
I _{OL}	Low-level output current	$V_{CC} = 2.7 V$		12	ma
		$V_{CC} = 3 V$		24	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	⁽¹⁾ MAX	UNIT	
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} – 0.2			
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
M		$I_{OH} = -8 \text{ mA}$	2.3 V	1.7			
V _{OH}		10	2.7 V	2.2		V	
		$I_{OH} = -12 \text{ mA}$	3 V	2.4			
		$I_{OH} = -24 \text{ mA}$	3 V	2.2			
		I _{OL} = 100 μA	1.65 V to 3.6 V		0.2		
		I _{OL} = 4 mA	1.65 V		0.45		
V _{OL}		I _{OL} = 8 mA	2.3 V		0.7	V	
		I _{OL} = 12 mA	2.7 V		0.4		
		I _{OL} = 24 mA	3 V		0.55		
l _l	Control inputs	V _I = 0 to 5.5 V	3.6 V		±5	μA	
		$ \begin{array}{c} V_{I} = 0.58 \text{ V} \\ V_{I} = 1.07 \text{ V} \\ V_{I} = 0.7 \text{ V} \\ \hline V_{I} = 0.7 \text{ V} \\ \hline Contract = 0.000 \text{ M} \\ Contract = 0.000 \text{ M} \\ Contract = 0.0$		15			
				-15			
				45			
I _{I(hold)}	A or B ports	V ₁ = 1.7 V	2.3 V	-45		μA	
· · /		V ₁ = 0.8 V	2.14	75			
		$V_1 = 2 V$	- 3 V	-75			
		V _I = 0 to 3.6 V ⁽²⁾	3.6 V		±500		
I _{off}		$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0		±10	μA	
I _{OZ} ⁽³⁾		$V_{O} = 0 \text{ V or } (V_{CC} \text{ to } 5.5 \text{ V})$	3.6 V		±10	μA	
		$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	0.01/		20		
I _{CC}		$3.6 \text{ V} \le V_1 \le 5.5 \text{ V}^{(4)}, \text{ I}_0 = 0$ 3.6 V			20	μA	
ΔI_{CC}		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V		500	μA	
Ci	Control inputs	$V_{I} = V_{CC} \text{ or } GND$	3.3 V		5	pF	
C _{io}	A or B ports	$V_{O} = V_{CC}$ or GND	3.3 V	8	.5	pF	

(1)

(2)

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. This is the bus-hold maximum dynamic current required to switch the input from one state to another. For the total leakage current in an I/O port, please consult the $I_{I(hold)}$ specification for the input voltage condition $0 \text{ V} < V_I < V_{CC}$, and the I_{OZ} specification for the input voltage conditions $V_I = 0 \text{ V}$ or $V_I = V_{CC}$ to 5.5 V. The bus-hold current, at input voltage greater than V_{CC} , is (3) negligible.

(4) This applies in the disabled state only.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			V _{CC} = ± 0.1		V _{CC} = 1 ± 0.2	2.5 V 2 V	V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
f _{clock}	clock frequency			130		150		150		150	MHz	
t _w	Pulse duration, CLK high or low		5		3.3		3.3		3.3		ns	
1	Satur time	Data before CLK1	5.8		3.4		3.4		2.8			
t _{su}	Setup time	CE before CLK↑	1.4		1.3		1.8		1.4		ns	
	the later and th	Data after CLK↑	0		0.5		0.5		0.5		ns	
τ _h	Hold time	CE after CLK↑	1.1		1.6		1.1		1.9			

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

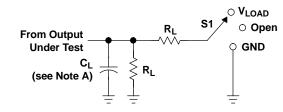
TEXAS INSTRUMENTS www.ti.com

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO (INPUT) (OUTPUT)		V _{CC} = 1 ± 0.1	V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V ± 0.2 V		2.7 V	V_{CC} = 3.3 V ± 0.3 V		UNIT
		(001F01)		MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			130		150		150		150		MHz
t _{pd}	CLKAB or CLKBA	B or A	2	11	1	7.6	1	7.6	1.6	6.6	ns
t _{en}	OE	A or B	2	10.6	1	8	1	8	1.1	6.6	ns
t _{dis}	ŌĒ	A or B	2	12.7	1	7.1	1	7.1	1.9	6.7	ns
t _{sk(o)}										1	ns

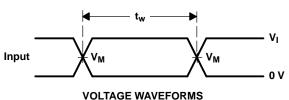
Operating Characteristics

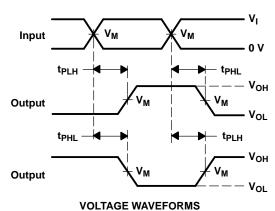

T_A = 25°C

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
C	Power dissipation capacitance	Outputs enabled	f = 10 MHz	55	61	69	рF	
C _{pd}	per transceiver	Outputs disabled		22	24	27	рг	

SCAS320L-NOVEMBER 1993-REVISED MARCH 2005

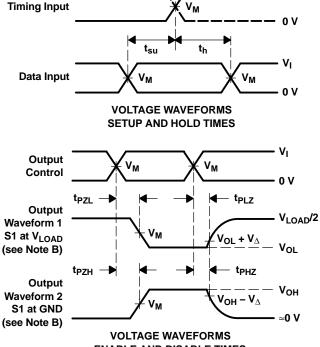
VI


PARAMETER MEASUREMENT INFORMATION


LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

N N	INPUTS		V	V	•		N
V _{CC}	VI	t _r /t _f	VM	V _{LOAD}	C∟	RL	V_Δ
$\textbf{1.8 V} \pm \textbf{0.15 V}$	v _{cc}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	Vcc	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V



OLTAGE WAVEFORMS PULSE DURATION

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

- NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74LVCH16952ADGGRE4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16952ADGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16952ADGVRE4	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16952ADGVRG4	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH16952ADLRG4	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16952ADGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16952ADGVR	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16952ADL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16952ADLG4	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH16952ADLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

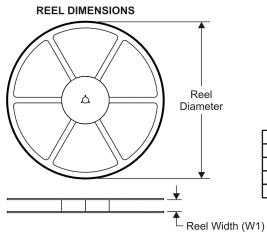
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

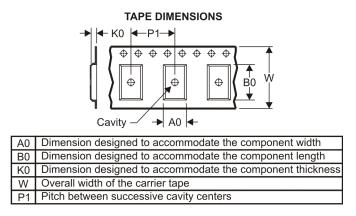
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

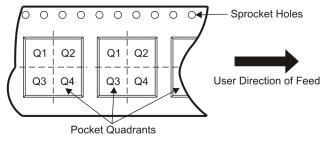
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVCH16952ADGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74LVCH16952ADGVR	TVSOP	DGV	56	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1
SN74LVCH16952ADLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

11-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCH16952ADGGR	TSSOP	DGG	56	2000	346.0	346.0	41.0
SN74LVCH16952ADGVR	TVSOP	DGV	56	2000	346.0	346.0	41.0
SN74LVCH16952ADLR	SSOP	DL	56	1000	346.0	346.0	49.0

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

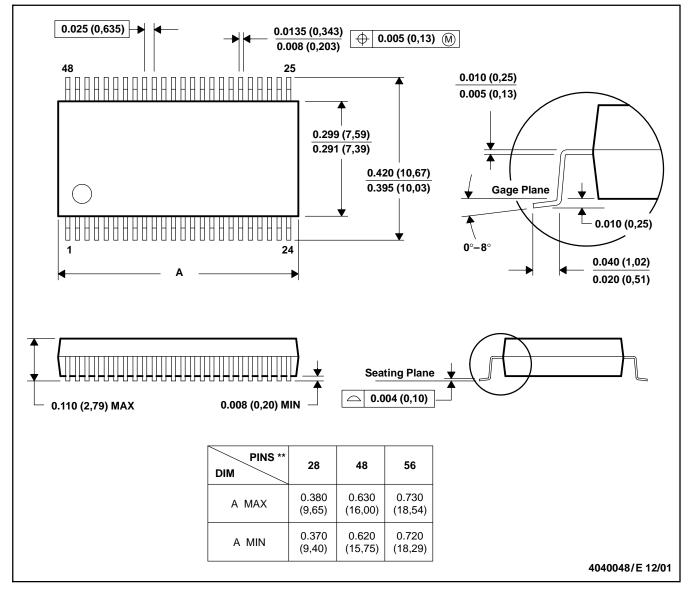
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153


MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

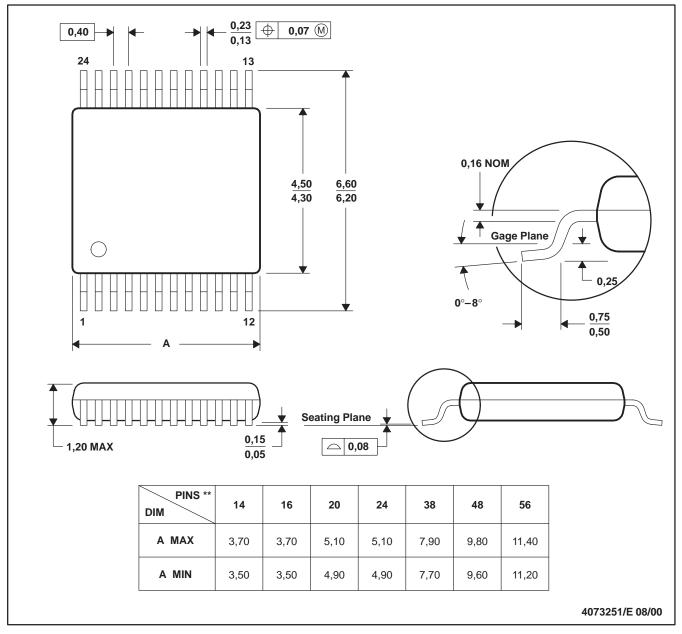
DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated